Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.602
Filtrar
1.
Sci Rep ; 14(1): 8451, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605136

RESUMO

Protein synthesis is a highly energy-consuming process that is downregulated in response to many environmental stresses or adverse conditions. Studies in the yeast Saccharomyces cerevisiae have shown that bulk translation is inhibited during adaptation to iron deficiency, which is consistent with its requirement for ribosome biogenesis and recycling. Although iron deficiency anemia is the most common human nutritional disorder, how iron modulates translation in mammals is poorly understood. Studies during erythropoiesis have shown that iron bioavailability is coordinated with globin synthesis via bulk translation regulation. However, little is known about the control of translation during iron limitation in other tissues. Here, we investigated how iron depletion affects protein synthesis in human osteosarcoma U-2 OS cells. By adding an extracellular iron chelator, we observed that iron deficiency limits cell proliferation, induces autophagy, and decreases the global rate of protein synthesis. Analysis of specific molecular markers indicates that the inhibition of bulk translation upon iron limitation occurs through the eukaryotic initiation factor eIF2α and mechanistic target of rapamycin (mTOR) pathways. In contrast to other environmental and nutritional stresses, iron depletion does not trigger the assembly of messenger ribonucleoprotein stress granules, which typically form upon polysome disassembly.


Assuntos
Deficiências de Ferro , Ferro , Animais , Humanos , Ferro/metabolismo , Fosforilação , Biossíntese de Proteínas , Saccharomyces cerevisiae/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Mamíferos/metabolismo
2.
Nat Commun ; 15(1): 3467, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658612

RESUMO

Light triggers an enhancement of global translation during photomorphogenesis in Arabidopsis, but little is known about the underlying mechanisms. The phosphorylation of the α-subunit of eukaryotic initiation factor 2 (eIF2α) at a conserved serine residue in the N-terminus has been shown as an important mechanism for the regulation of protein synthesis in mammalian and yeast cells. However, whether the phosphorylation of this residue in plant eIF2α plays a role in regulation of translation remains elusive. Here, we show that the quadruple mutant of SUPPRESSOR OF PHYA-105 family members (SPA1-SPA4) display repressed translation efficiency after light illumination. Moreover, SPA1 directly phosphorylates the eIF2α C-terminus under light conditions. The C-term-phosphorylated eIF2α promotes translation efficiency and photomorphogenesis, whereas the C-term-unphosphorylated eIF2α results in a decreased translation efficiency. We also demonstrate that the phosphorylated eIF2α enhances ternary complex assembly by promoting its affinity to eIF2ß and eIF2γ. This study reveals a unique mechanism by which light promotes translation via SPA1-mediated phosphorylation of the C-terminus of eIF2α in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Ciclo Celular , Fator de Iniciação 2 em Eucariotos , Luz , Biossíntese de Proteínas , Fosforilação , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Fator de Iniciação 2 em Eucariotos/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Biossíntese de Proteínas/efeitos da radiação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Mutação
3.
Sci Total Environ ; 924: 171649, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38485018

RESUMO

Unstoppable global warming and increased frequency of extreme heat leads to human and animals easier to suffer from heat stress (HS), with gastrointestinal abnormalities as one of the initial clinical symptoms. HS induces intestinal mucosal damage owing to intestinal hypoxia and hyperthermia. Hypoxia-inducible factor 1α (HIF-1α) activates numerous genes to mediate cell hypoxic responses; however, its role in HS-treated intestinal mucosa is unknown. This work aimed to explore HIF-1α function and regulatory mechanisms in HS-treated pig intestines. We assigned 10 pigs to control and moderate HS groups. Physical signs, stress, and antioxidant levels were detected, and the intestines were harvested after 72 h of HS treatment to study histological changes and HIF-1α, heat shock protein 90 (HSP90), and prolyl-4-hydroxylase 2 (PHD-2) expression. In addition, porcine intestinal columnar epithelial cells (IPEC-J2) underwent HS treatment (42 °C, 5 % O2) to further explore the functions and regulatory mechanism of HIF-1α. The results of histological examination revealed HS caused intestinal villi damage and increased apoptotic epithelial cell; the expression of HIF-1α and HSP90 increased while PHD-2 showed and opposite trend. Transcriptome sequencing analysis revealed that HS activated HIF-1 signaling. To further explore the role of HIF-1α on HS induced IPEC-J2 apoptosis, the HIF-1α was interfered and overexpression respectively, and the result confirmed that HIF-1α could inhibited cell apoptosis under HS. Furthermore, HS-induced apoptosis depends on eukaryotic initiation factor 2 alpha (eif2α)/activating transcription factor 4 (ATF4)/CCAAT-enhancer-binding protein homologous protein (CHOP) pathway, and HIF-1α can inhibit this pathway to alleviate IPEC-J2 cell apoptosis. In conclusion, this study suggests that HS can promote intestinal epithelial cell apoptosis and cause pig intestinal mucosal barrier damage; the HIF-1α can alleviate cell apoptosis by inhibiting eif2α/ATF4/CHOP signaling. These results indicate that HIF-1α plays a protective role in HS, and offers a potential target for HS prevention and mitigation.


Assuntos
Apoptose , Resposta ao Choque Térmico , Subunidade alfa do Fator 1 Induzível por Hipóxia , Animais , Fator 4 Ativador da Transcrição/metabolismo , Apoptose/genética , Apoptose/fisiologia , Células Epiteliais/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Resposta ao Choque Térmico/genética , Intestinos/metabolismo , Suínos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator de Transcrição CHOP/metabolismo , Transdução de Sinais
4.
Proc Natl Acad Sci U S A ; 121(14): e2320013121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547060

RESUMO

Dephosphorylation of pSer51 of the α subunit of translation initiation factor 2 (eIF2αP) terminates signaling in the integrated stress response (ISR). A trimeric mammalian holophosphatase comprised of a protein phosphatase 1 (PP1) catalytic subunit, the conserved C-terminally located ~70 amino acid core of a substrate-specific regulatory subunit (PPP1R15A/GADD34 or PPP1R15B/CReP) and G-actin (an essential cofactor) efficiently dephosphorylate eIF2αP in vitro. Unlike their viral or invertebrate counterparts, with whom they share the conserved 70 residue core, the mammalian PPP1R15s are large proteins of more than 600 residues. Genetic and cellular observations point to a functional role for regions outside the conserved core of mammalian PPP1R15A in dephosphorylating its natural substrate, the eIF2 trimer. We have combined deep learning technology, all-atom molecular dynamics simulations, X-ray crystallography, and biochemistry to uncover binding of the γ subunit of eIF2 to a short helical peptide repeated four times in the functionally important N terminus of human PPP1R15A that extends past its conserved core. Binding entails insertion of Phe and Trp residues that project from one face of an α-helix formed by the conserved repeats of PPP1R15A into a hydrophobic groove exposed on the surface of eIF2γ in the eIF2 trimer. Replacing these conserved Phe and Trp residues with Ala compromises PPP1R15A function in cells and in vitro. These findings suggest mechanisms by which contacts between a distant subunit of eIF2 and elements of PPP1R15A distant to the holophosphatase active site contribute to dephosphorylation of eIF2αP by the core PPP1R15 holophosphatase and to efficient termination of the ISR in mammals.


Assuntos
Fator de Iniciação 2 em Eucariotos , Processamento de Proteína Pós-Traducional , Animais , Humanos , Actinas/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fosforilação , Proteína Fosfatase 1/metabolismo
5.
Mol Cell ; 84(6): 995-997, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38518749

RESUMO

Chakrabarty et al.1 demonstrate that phospho-EIF2α (pEIF2α), the translation initiation factor that mediates the integrated stress response (ISR), is necessary and sufficient for the autophagic degradation of mitochondria following the addition of mitochondrial stressors.


Assuntos
Mitocôndrias , Estresse Fisiológico , Fosforilação , Mitocôndrias/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo
6.
Curr Biol ; 34(7): 1390-1402.e4, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38428416

RESUMO

Collective cell migration is integral to many developmental and disease processes. Previously, we discovered that protein phosphatase 1 (Pp1) promotes border cell collective migration in the Drosophila ovary. We now report that the Pp1 phosphatase regulatory subunit dPPP1R15 is a critical regulator of border cell migration. dPPP1R15 is an ortholog of mammalian PPP1R15 proteins that attenuate the endoplasmic reticulum (ER) stress response. We show that, in collectively migrating border cells, dPPP1R15 phosphatase restrains an active physiological protein kinase R-like ER kinase- (PERK)-eIF2α-activating transcription factor 4 (ATF4) stress pathway. RNAi knockdown of dPPP1R15 blocks border cell delamination from the epithelium and subsequent migration, increases eIF2α phosphorylation, reduces translation, and drives expression of the stress response transcription factor ATF4. We observe similar defects upon overexpression of ATF4 or the eIF2α kinase PERK. Furthermore, we show that normal border cells express markers of the PERK-dependent ER stress response and require PERK and ATF4 for efficient migration. In many other cell types, unresolved ER stress induces initiation of apoptosis. In contrast, border cells with chronic RNAi knockdown of dPPP1R15 survive. Together, our results demonstrate that the PERK-eIF2α-ATF4 pathway, regulated by dPPP1R15 activity, counteracts the physiological ER stress that occurs during collective border cell migration. We propose that in vivo collective cell migration is intrinsically "stressful," requiring tight homeostatic control of the ER stress response for collective cell cohesion, dynamics, and movement.


Assuntos
Transdução de Sinais , eIF-2 Quinase , Animais , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Apoptose , Movimento Celular , Monoéster Fosfórico Hidrolases/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Mamíferos
7.
Biochem J ; 481(7): 481-498, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38440860

RESUMO

The protein kinase Gcn2 and its effector protein Gcn1 are part of the general amino acid control signalling (GAAC) pathway best known in yeast for its function in maintaining amino acid homeostasis. Under amino acid limitation, Gcn2 becomes activated, subsequently increasing the levels of phosphorylated eIF2α (eIF2α-P). This leads to the increased translation of transcriptional regulators, such as Gcn4 in yeast and ATF4 in mammals, and subsequent re-programming of the cell's gene transcription profile, thereby allowing cells to cope with starvation. Xrn1 is involved in RNA decay, quality control and processing. We found that Xrn1 co-precipitates Gcn1 and Gcn2, suggesting that these three proteins are in the same complex. Growth under starvation conditions was dependent on Xrn1 but not on Xrn1-ribosome association, and this correlated with reduced eIF2α-P levels. Constitutively active Gcn2 leads to a growth defect due to eIF2α-hyperphosphorylation, and we found that this phenotype was independent of Xrn1, suggesting that xrn1 deletion does not enhance eIF2α de-phosphorylation. Our study provides evidence that Xrn1 is required for efficient Gcn2 activation, directly or indirectly. Thus, we have uncovered a potential new link between RNA metabolism and the GAAC.


Assuntos
Fator de Iniciação 2 em Eucariotos , Exorribonucleases , Fatores de Alongamento de Peptídeos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Aminoácidos/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Mamíferos/metabolismo , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo
8.
Viruses ; 16(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38399988

RESUMO

Viruses evolve many strategies to ensure the efficient synthesis of their proteins. One such strategy is the inhibition of the integrated stress response-the mechanism through which infected cells arrest translation through the phosphorylation of the alpha subunit of the eukaryotic translation initiation factor 2 (eIF2α). We have recently shown that the human common cold betacoronavirus OC43 actively inhibits eIF2α phosphorylation in response to sodium arsenite, a potent inducer of oxidative stress. In this work, we examined the modulation of integrated stress responses by OC43 and demonstrated that the negative feedback regulator of eIF2α phosphorylation GADD34 is strongly induced in infected cells. However, the upregulation of GADD34 expression induced by OC43 was independent from the activation of the integrated stress response and was not required for the inhibition of eIF2α phosphorylation in virus-infected cells. Our work reveals a complex interplay between the common cold coronavirus and the integrated stress response, in which efficient viral protein synthesis is ensured by the inhibition of eIF2α phosphorylation but the GADD34 negative feedback loop is disrupted.


Assuntos
Betacoronavirus , Resfriado Comum , Humanos , Betacoronavirus/metabolismo , Proteína Fosfatase 1/metabolismo , Proteínas/metabolismo , Fosforilação , Biossíntese de Proteínas , Fator de Iniciação 2 em Eucariotos/metabolismo , eIF-2 Quinase/genética
9.
J Biol Chem ; 300(3): 105673, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272235

RESUMO

The protein kinase RNA-like endoplasmic reticulum kinase (PERK)-eukaryotic translation initiation factor 2 subunit α (eIF2α) pathway plays an essential role in endoplasmic reticulum (ER) stress. When the PERK-eIF2α pathway is activated, PERK phosphorylates eIF2α (p-eIF2α) at Ser51 and quenches global protein synthesis. In this study, we verified eIF2α as a bona fide substrate of the E3 ubiquitin ligase carboxyl terminus of the HSC70-interaction protein (CHIP) both in vitro and in cells. CHIP mediated the ubiquitination and degradation of nonphosphorylated eIF2α in a chaperone-independent manner and promoted the upregulation of the cyclic AMP-dependent transcription factor under endoplasmic reticulum stress conditions. Cyclic AMP-dependent transcription factor induced the transcriptional enhancement of the tumor suppressor genes PTEN and RBM5. Although transcription was enhanced, the PTEN protein was subsequently degraded by CHIP, but the expression of the RBM5 protein was upregulated, thereby suppressing the proliferation and migration of A549 cells. Overall, our study established a new mechanism that deepened the understanding of the PERK-eIF2α pathway through the ubiquitination and degradation of eIF2α. The crosstalk between the phosphorylation and ubiquitination of eIF2α shed light on a new perspective for tumor progression.


Assuntos
Fator de Iniciação 2 em Eucariotos , Genes Supressores de Tumor , Ubiquitina-Proteína Ligases , Ubiquitinação , Regulação para Cima , Humanos , Células A549 , Proliferação de Células/genética , AMP Cíclico/metabolismo , Estresse do Retículo Endoplasmático/genética , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fosforilação , Fatores de Transcrição/metabolismo , Ubiquitinação/genética , Regulação para Cima/genética , Movimento Celular/genética , Ubiquitina-Proteína Ligases/metabolismo
10.
Nucleic Acids Res ; 52(4): 1830-1846, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281137

RESUMO

Diverse environmental insults induce the integrated stress response (ISR), which features eIF2 phosphorylation and translational control that serves to restore protein homeostasis. The eIF2 kinase GCN2 is a first responder in the ISR that is activated by amino acid depletion and other stresses not directly related to nutrients. Two mechanisms are suggested to trigger an ordered process of GCN2 activation during stress: GCN2 monitoring stress via accumulating uncharged tRNAs or by stalled and colliding ribosomes. Our results suggest that while ribosomal collisions are indeed essential for GCN2 activation in response to translational elongation inhibitors, conditions that trigger deacylation of tRNAs activate GCN2 via its direct association with affected tRNAs. Both mechanisms require the GCN2 regulatory domain related to histidyl tRNA synthetases. GCN2 activation by UV irradiation features lowered amino acids and increased uncharged tRNAs and UV-induced ribosome collisions are suggested to be dispensable. We conclude that there are multiple mechanisms that activate GCN2 during diverse stresses.


Assuntos
Proteínas Serina-Treonina Quinases , Aminoácidos/metabolismo , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Ribossomos/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Humanos
11.
Tissue Cell ; 86: 102289, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38194851

RESUMO

Hypoxic-ischemic brain damage (HIBD) frequently induces cognitive impairments. Investigating the role of sevoflurane postconditioning (SPC) in HIBD, we conducted experiments involving HIBD modeling, SPC treatment, and interventions with the PERK inhibitor GSK2656157 or the PERK activator CCT020312, administered 30 min before modeling, followed by SPC treatment. Behavioral testing using the Morris water maze test and Neurological Deficiency Scale (NDS) was conducted. Additionally, Nissl staining assessed hippocampal CA1 area neuronal density, TUNEL staining evaluated hippocampal CA1 area neuronal apoptosis, and Western blot determined hippocampal CA1 area protein levels, including Bax, Bcl-2, p-PERK/PERK, p-eIF2/eIF2, ATF4, CHOP, GRP78, Bax, and Bcl-2 protein levels. Following SPC treatment, HIBD rats exhibited improved spatial learning and memory abilities, reduced neuronal apoptosis, increased neuronal density in the hippocampal CA1 area, elevated Bcl-2 protein level, decreased Bax protein levels, and decreased levels of endoplasmic reticulum stress pathway related proteins (p-PERK/PERK, p-eIF2/eIF2, ATF4, CHOP and GRP78). Pre-modeling treatment with the PERK inhibitor treatment improved outcomes in HIBD rats. However, pre-modeling treatment with the PERK activator CCT020312 counteracted the protective effects of SPC against HIBD in rats. In conclusion, SPC alleviates neuronal apoptosis in the hippocampus CA1 area of HIBD rats by inhibiting the endoplasmic reticulum stress pathway PERK/ATF4/CHOP, thereby mitigating HIBD in rats.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Hipóxia-Isquemia Encefálica , Sevoflurano , Animais , Ratos , Apoptose , Proteína X Associada a bcl-2/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/farmacologia , Hipocampo/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Sprague-Dawley , Sevoflurano/farmacologia
12.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279321

RESUMO

Specific sequences within RNA encoded by human genes essential for survival possess the ability to activate the RNA-dependent stress kinase PKR, resulting in phosphorylation of its substrate, eukaryotic translation initiation factor-2α (eIF2α), either to curb their mRNA translation or to enhance mRNA splicing. Thus, interferon-γ (IFNG) mRNA activates PKR through a 5'-terminal 203-nucleotide pseudoknot structure, thereby strongly downregulating its own translation and preventing a harmful hyper-inflammatory response. Tumor necrosis factor-α (TNF) pre-mRNA encodes within the 3'-untranslated region (3'-UTR) a 104-nucleotide RNA pseudoknot that activates PKR to enhance its splicing by an order of magnitude while leaving mRNA translation intact, thereby promoting effective TNF protein expression. Adult and fetal globin genes encode pre-mRNA structures that strongly activate PKR, leading to eIF2α phosphorylation that greatly enhances spliceosome assembly and splicing, yet also structures that silence PKR activation upon splicing to allow for unabated globin mRNA translation essential for life. Regulatory circuits resulting in each case from PKR activation were reviewed previously. Here, we analyze mutations within these genes created to delineate the RNA structures that activate PKR and to deconvolute their folding. Given the critical role of intragenic RNA activators of PKR in gene regulation, such mutations reveal novel potential RNA targets for human disease.


Assuntos
Precursores de RNA , RNA , Humanos , RNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Biossíntese de Proteínas , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , RNA Mensageiro/genética , Fosforilação , Fator de Necrose Tumoral alfa/metabolismo , Nucleotídeos/metabolismo , Globinas/genética , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo
13.
Arch Toxicol ; 98(1): 207-221, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37955688

RESUMO

Perfluorooctane sulfonate (PFOS) is widely used in industry and consumer products. Previous studies have showed that PFOS gestational exposure is associated with offspring lung damage in rat. However, the underlying mechanisms remain poorly understood. In this study, we investigated the role of gasdermin E (GSDME) in lung injury of offspring and its underlying mechanisms using in vivo and in vitro approaches. Pregnant SD rats were exposed to PFOS (1 mg/kg BW/d) between gestational day 12-18, and the lung tissue of the offspring was evaluated on postnatal day 7. PFOS treated animals exhibited alveolar septal thickening and inflammation-related damages, with an increased expression of GSDME in alveolar type II epithelial cells (AECII). Furthermore, in vitro experiments demonstrated that PFOS exposure (with 225 µM and up) upregulated the caspase-3/GSDME signaling pathway in AECII. Also, ultrastructure analysis revealed significant changes in the endoplasmic reticulum (ER) structure in PFOS-induced pyroptotic cells, which is consistent with the ER stress detected in these cells. Additionally, PFOS exposure led to increased expression of ER stress-related proteins, including p-PERK, p-eIF2α, ATF4, and CHOP. Subsequently, using specific inhibitors, we found that the PERK/ATF4 pathway acted as an upstream signal regulating GSDME-dependent pyroptosis. Overall, our findings show that GSDME-dependent pyroptosis plays a crucial role in the lung injury induced by gestational PFOS exposure, and the PERK/ATF4 pathway may function as a possible mediator of this process.


Assuntos
Lesão Pulmonar , Piroptose , Animais , Ratos , Fator 4 Ativador da Transcrição/metabolismo , Caspase 3/metabolismo , Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/metabolismo , Lesão Pulmonar/induzido quimicamente , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Transcrição CHOP/metabolismo
14.
J Cell Mol Med ; 28(1): e18030, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37929884

RESUMO

Acetylshikonin (AS) is an active component of Lithospermum erythrorhizon Sieb. et Zucc that exhibits activity against various cancers; however, the underlying mechanisms of AS against oesophageal squamous carcinoma (ESCC) need to be elusive. The research explores the anti-cancer role and potential mechanism of AS on ESCC in vitro and in vivo, providing evidences for AS treatment against ESCC. In this study, we firstly demonstrated that AS treatment effectively inhibits cell viability and proliferation of ESCC cells. In addition, AS significantly induces G1/S phage arrest and promotes apoptosis in ESCC cell lines. Further studies reveal that AS induces ER stress, as observed by dose- and time-dependently increased expression of BIP, PDI, PERK, phosphorylation of eIF2α , CHOP and splicing of XBP1. CHOP knockdown or PERK inhibition markedly rescue cell apoptosis induced by AS. Moreover, AS treatment significantly inhibits ESCC xenograft growth in nude mice. Elevated expression of BIP and CHOP is also observed in xenograft tumours. Taken together, AS inhibits proliferation and induces apoptosis through ER stress-activated PERK/eIF2α /CHOP pathway in ESCC, which indicates AS represents a promising candidate for ESCC treatment.


Assuntos
Antraquinonas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Camundongos , Animais , Humanos , eIF-2 Quinase/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Camundongos Nus , Estresse do Retículo Endoplasmático , Apoptose , Fator de Transcrição CHOP/metabolismo
15.
Cell Rep ; 43(1): 113615, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38159280

RESUMO

The integrated stress response (ISR) is critical for cell survival under stress. In response to diverse environmental cues, eIF2α becomes phosphorylated, engendering a dramatic change in mRNA translation. The activation of ISR plays a pivotal role in the early embryogenesis, but the eIF2-dependent translational landscape in pluripotent embryonic stem cells (ESCs) is largely unexplored. We employ a multi-omics approach consisting of ribosome profiling, proteomics, and metabolomics in wild-type (eIF2α+/+) and phosphorylation-deficient mutant eIF2α (eIF2αA/A) mouse ESCs (mESCs) to investigate phosphorylated (p)-eIF2α-dependent translational control of naive pluripotency. We show a transient increase in p-eIF2α in the naive epiblast layer of E4.5 embryos. Absence of eIF2α phosphorylation engenders an exit from naive pluripotency following 2i (two chemical inhibitors of MEK1/2 and GSK3α/ß) withdrawal. p-eIF2α controls translation of mRNAs encoding proteins that govern pluripotency, chromatin organization, and glutathione synthesis. Thus, p-eIF2α acts as a key regulator of the naive pluripotency gene regulatory network.


Assuntos
Células-Tronco Embrionárias Murinas , Células-Tronco Pluripotentes , Animais , Camundongos , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Fosforilação , Células-Tronco Pluripotentes/metabolismo , RNA Mensageiro/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo
16.
Pharmazie ; 78(9): 196-200, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38037218

RESUMO

Endoplasmic reticulum stress (ER stress) is suggested to promote cardiomyocyte apoptosis and ultimately lead to ischemic injury. Inhibition of ER stress-induced apoptosis may be a therapeutic strategy for MI injury. Astragaloside-IV (AST) from Astragalus membranaceus (Fisch) Bge, was reported to have cardioprotective properties. In this study, we investigated the protective effect of AST on cardiomyocytes against hypoxia injury by regulating ER stress and inhibiting apoptosis. H9c2 cardiomyocytes were divided into three groups, normal group, hypoxia group and AST group. Cell viability was determined by CCK-8 assay. Intracellular reactive oxygen species (ROS) production was detected by DCFH-DA (2,7- dichloro-dihydrofluorescein diacetate) florescent staining. The study showed that AST treatment could significantly increase the cell viability of H9c2 cells exposed to hypoxia. Furthermore, AST could restrain cell apoptosis and decrease the production of ROS. Compared with normal group, the protein levels of Bax, caspase-3, caspase-9, GRP78, p-eIF2α, and CHOP were enhanced in the hypoxia group, whereas the protein level of Bcl-2 was dramatically reduced. Compared with hypoxia group, AST markedly inhibited the phosphorylation of eIF2α and the expression of caspase-3, caspase-9 and CHOP, and promoted the protein expression of Bcl-2. Thus, AST can inhibit the ER stress-mediated apoptosis, partly through the eIF2α/CHOP pathway suppression to inhibit ER stress.


Assuntos
Fator de Iniciação 2 em Eucariotos , Miócitos Cardíacos , Humanos , Caspase 3/metabolismo , Caspase 9/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/farmacologia , Estresse do Retículo Endoplasmático , Transdução de Sinais , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Hipóxia/tratamento farmacológico , Apoptose
17.
Cell Rep ; 42(12): 113583, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38096057

RESUMO

Selective autophagy mediates the removal of harmful material from the cytoplasm. This cargo material is selected by cargo receptors, which orchestrate its sequestration within double-membrane autophagosomes and subsequent lysosomal degradation. The cargo receptor p62/SQSTM1 is present in cytoplasmic condensates, and a fraction of them are constantly delivered into lysosomes. However, the molecular composition of the p62 condensates is incompletely understood. To obtain insights into their composition, we develop a method to isolate these condensates and find that p62 condensates are enriched in components of the translation machinery. Furthermore, p62 interacts with translation initiation factors, and eukaryotic initiation factor 2α (eIF2α) and eIF4E are degraded by autophagy in a p62-dependent manner. Thus, p62-mediated autophagy may in part be linked to down-regulation of translation initiation. The p62 condensate isolation protocol developed here may facilitate the study of their contribution to cellular quality control and their roles in health and disease.


Assuntos
Condensados Biomoleculares , Fator de Iniciação 2 em Eucariotos , Fator de Iniciação 4E em Eucariotos , Proteínas de Ligação a RNA , Humanos , Células HEK293 , Proteínas de Ligação a RNA/metabolismo , Condensados Biomoleculares/efeitos dos fármacos , Condensados Biomoleculares/metabolismo , Fator de Iniciação 2 em Eucariotos/antagonistas & inibidores , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 4E em Eucariotos/antagonistas & inibidores , Fator de Iniciação 4E em Eucariotos/metabolismo , Autofagia/efeitos dos fármacos , Autofagia/genética , Wortmanina/farmacologia
18.
Int J Mol Sci ; 24(24)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38139150

RESUMO

The vertebrate PPP1R15 family consists of the proteins GADD34 (growth arrest and DNA damage-inducible protein 34, the product of the PPP1R15A gene) and CReP (constitutive repressor of eIF2α phosphorylation, the product of the PPP1R15B gene), both of which function as targeting/regulatory subunits for protein phosphatase 1 (PP1) by regulating subcellular localization, modulating substrate specificity and assembling complexes with target proteins. The primary cellular function of these proteins is to facilitate the dephosphorylation of eukaryotic initiation factor 2-alpha (eIF2α) by PP1 during cell stress. In this review, we will provide a comprehensive overview of the cellular function, biochemistry and pharmacology of GADD34 and CReP, starting with a brief introduction of eIF2α phosphorylation via the integrated protein response (ISR). We discuss the roles GADD34 and CReP play as feedback inhibitors of the unfolded protein response (UPR) and highlight the critical function they serve as inhibitors of the PERK-dependent branch, which is particularly important since it can mediate cell survival or cell death, depending on how long the stressful stimuli lasts, and GADD34 and CReP play key roles in fine-tuning this cellular decision. We briefly discuss the roles of GADD34 and CReP homologs in model systems and then focus on what we have learned about their function from knockout mice and human patients, followed by a brief review of several diseases in which GADD34 and CReP have been implicated, including cancer, diabetes and especially neurodegenerative disease. Because of the potential importance of GADD34 and CReP in aspects of human health and disease, we will discuss several pharmacological inhibitors of GADD34 and/or CReP that show promise as treatments and the controversies as to their mechanism of action. This review will finish with a discussion of the biochemical properties of GADD34 and CReP, their regulation and the additional interacting partners that may provide insight into the roles these proteins may play in other cellular pathways. We will conclude with a brief outline of critical areas for future study.


Assuntos
Doenças Neurodegenerativas , Proteína Fosfatase 1 , Animais , Humanos , Camundongos , Fator de Iniciação 2 em Eucariotos/metabolismo , Camundongos Knockout , Fosforilação , Biossíntese de Proteínas , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteínas/metabolismo
19.
Respir Res ; 24(1): 287, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978501

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a heterogeneous disease that is pathologically characterized by areas of normal-appearing lung parenchyma, active fibrosis (transition zones including fibroblastic foci) and dense fibrosis. Defining transcriptional differences between these pathologically heterogeneous regions of the IPF lung is critical to understanding the distribution and extent of fibrotic lung disease and identifying potential therapeutic targets. Application of a spatial transcriptomics platform would provide more detailed spatial resolution of transcriptional signals compared to previous single cell or bulk RNA-Seq studies. METHODS: We performed spatial transcriptomics using GeoMx Nanostring Digital Spatial Profiling on formalin-fixed paraffin-embedded (FFPE) tissue from 32 IPF and 12 control subjects and identified 231 regions of interest (ROIs). We compared normal-appearing lung parenchyma and airways between IPF and controls with histologically normal lung tissue, as well as histologically distinct regions within IPF (normal-appearing lung parenchyma, transition zones containing fibroblastic foci, areas of dense fibrosis, and honeycomb epithelium metaplasia). RESULTS: We identified 254 differentially expressed genes (DEGs) between IPF and controls in histologically normal-appearing regions of lung parenchyma; pathway analysis identified disease processes such as EIF2 signaling (important for cap-dependent mRNA translation), epithelial adherens junction signaling, HIF1α signaling, and integrin signaling. Within IPF, we identified 173 DEGs between transition and normal-appearing lung parenchyma and 198 DEGs between dense fibrosis and normal lung parenchyma; pathways dysregulated in both transition and dense fibrotic areas include EIF2 signaling pathway activation (upstream of endoplasmic reticulum (ER) stress proteins ATF4 and CHOP) and wound healing signaling pathway deactivation. Through cell deconvolution of transcriptome data and immunofluorescence staining, we confirmed loss of alveolar parenchymal signals (AGER, SFTPB, SFTPC), gain of secretory cell markers (SCGB3A2, MUC5B) as well as dysregulation of the upstream regulator ATF4, in histologically normal-appearing tissue in IPF. CONCLUSIONS: Our findings demonstrate that histologically normal-appearing regions from the IPF lung are transcriptionally distinct when compared to similar lung tissue from controls with histologically normal lung tissue, and that transition zones and areas of dense fibrosis within the IPF lung demonstrate activation of ER stress and deactivation of wound healing pathways.


Assuntos
Fator de Iniciação 2 em Eucariotos , Fibrose Pulmonar Idiopática , Humanos , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Transcriptoma , Fibrose
20.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834012

RESUMO

Triple-negative breast cancer (TNBC) is the most fatal subtype of breast cancer; however, effective treatment strategies for TNBC are lacking. Therefore, it is important to explore the mechanism of TNBC metastasis and identify its therapeutic targets. Dysregulation of ETHE1 leads to ethylmalonic encephalopathy in humans; however, the role of ETHE1 in TNBC remains elusive. Stable cell lines with ETHE1 overexpression or knockdown were constructed to explore the biological functions of ETHE1 during TNBC progression in vitro and in vivo. Mass spectrometry was used to analyze the molecular mechanism through which ETHE1 functions in TNBC progression. ETHE1 had no impact on TNBC cell proliferation and xenograft tumor growth but promoted TNBC cell migration and invasion in vitro and lung metastasis in vivo. The effect of ETHE1 on TNBC cell migratory potential was independent of its enzymatic activity. Mechanistic investigations revealed that ETHE1 interacted with eIF2α and enhanced its phosphorylation by promoting the interaction between eIF2α and GCN2. Phosphorylated eIF2α in turn upregulated the expression of ATF4, a transcriptional activator of genes involved in cell migration and tumor metastasis. Notably, inhibition of eIF2α phosphorylation through ISRIB or ATF4 knockdown partially abolished the tumor-promoting effect of ETHE1 overexpression. ETHE1 has a functional and mechanistic role in TNBC metastasis and offers a new therapeutic strategy for targeting ETHE1-propelled TNBC using ISRIB.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...